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On the basis of the boundary-layer equations solutions are obtained for the problems of convective and
combined heat transfer under conditions of free convection in transparent and gray media. The solution
for convective heat transfer in a transparent medium is obtained by means of a Taylor expansion of the
temperature function. Expressions for the radiative and convective components of combined heat transfer
are also presented, and it is shown that these fluxes are interrelated quantities.

The nonisothermal motion of a medium along a wall is accompanied by formation of hydrodynamic and thermal
boundary layers of thickness 6 = ¢(x) and & = ¥(x), respectively (Fig. 1).
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Fig. 1. Model of boundary layer near
wall,

The relationship between the boundary layers can be represented in the form 61/6 = £.

The momentum and energy transfer near a vertical wall can be represented by the following system of equations:
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The second term on the right-hand side of the energy transfer equation (3) characterizes the change in the
radiant flux, which for media with considerable optical density ké > 6 is represented using the diffusional concept of
energy transfer.

The second term on the right-hand side of the momentum equation (2), which takes the effect of gravitational
forces into account, can be represented in the somewhat different form:
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where T, is the temperature of the medium outside the boundary layer. Expanding the function 1/T in a Taylor series
near the point 1/T; and cutting off the series after three terms, we obtain
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To solve the system of equations (1)—(4) it is necessary to take the following boundary conditions into account:
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We introduce the new variables 7 = y/é, np = y/ 0.
The velocity field can be represented in the following form:
W,
P22 — gm), (5)
Pod
where u is a constant with the dimension of velocity.
Differentiating both sides of (5) with respect to x, we obtain
—_— = 0 U — me———
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Using the continuity equation (1), we find the y-component of the velocity
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The temperature field can be represented in the following form:
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Differentiating both sides of (6) with respect to x and y, we obtain
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Thus, using the above transformations, we reduce the momentum equation (2) and the energy transfer equation
(3) to the form
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We find the solution of Egs. (7) and (8) in series form:

e =@+ an +an’+ o’ Fantd (9)
V() = bo + by (&) + bz (En)* + by (B + ba(EM)* + - - {10
By using the boundary conditions at y = 0 we can find the value of the coefficients 2, and by:
T
Gy =10; by= —-F
0 (! T.—T,

Using Eqs. (9) and (10) in solving the system of equations (7) and (8), we can obtain the values of the
coefficients ay, ay, a4, ..., by, by, by, ... in the form of functions of ay and by,

An analysis of the coefficients bj obtained enables us to desecribe the temperature field in the boundary layer by
means of the following expression:
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Using the boundary conditions at n =1

W
— b B —
Tw—Ty  Ty—T, —0ifn

T . T [ by B .

——1and 9
T, —T, n
we find
4
he=—1, (12)
A T, 372 AT 6
E=JA,16112 14 w
: {{ {Aﬁ (AT)](TW Jt
A T 3 AT \3
- 651440 —6827 2 4 w } X
- [4+(AT)J(TW)
A, Ty \312/ AT \6,-11173
X 4 | —= . 13
{“‘[A4+(AT)] TWM } (13)

Substituting the values of the coefficients aj in Eq. (9) and using the boundary conditions at 1 = 1 in the form
Wy = 0 and 8W/3m = 0, we obtain the following system of equations:
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where
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1t is not possible to find the values of the coefficients a; and by in general form, since the system of equations
contains two variables AT/Ty and N = A,/A, = Ak/qAT?. Therefore, the subsequent solution was obtained for
specifically selected values of AT/Ty and N. Altogether we examined 16 variants with four values of AT/Ty [0.1;
0.2; 0.3; 0.4] and four values of the parameter N [0.1; 1; 10; 100], characterizing the ratio of the quantity of heat
transferred by heat conduction to the quantity of heat transferred by radiation.

In examining the problem of energy transfer by free convection only, without allowance for radiative transfer,
we analytically determined an expression for the convective heat-transfer coefficient

Nu :cf/’p‘r ;Vc? (16)

In this case the coefficient C depends only on the ratio AT/ Ty (Table 1), If the temperature drop (Ty — Ty) is
inconsiderable, the coefficient C does not change and may be faken equal to 0.315.

Table. 1.The Coefficient C as a Function of the Parameter AT/ Ty

AT 0.1 0.2 0.3 0.4 0.5
TW
C 0.315 0.317 0.316 0.296 0.277

The expression obtained is in good agreement with Herman's solution obtained by introducing a special stream
function.

As distinct from Herman's solution, which substitutes 1/T, for the temperature function 1/T in the momentum
equation (2), our solution employs the first three terms of the Taylor expansion of the function.

As pointed out above, the solution of the problem in the presence of combined heat transfer was obtained
separately for each of the selected variants (of N and AT/Tw). As a result of the solution we found an expression that
enabled us to determine the convective heat-transfer coefficient under conditions of combined heat transfer:

Nu* = C*§/"Pr 1/ Gr, an
where
C* = (No.us+o.oonw__0v57) AT . (18)
The heat flux ge is given by the expression
qg. = % AT Nu*, (19)

Thus, for each specific value of the parameters of the medium and the wall it is possible to find the convective
heat flux.

In Fig. 2 the convective heat flux is shown as a function of the parameters N and the optical density of the
medium (k6), in this case CO,.

An analysis of graph shows that as the optical density of the medium increases the convective component also
increases.

As the parameter N decreases, a marked increase in the convective heat flux is also observed. This increase in
qe is attributable to an increase in the temperature difference between the medium and the wall (AT), which in turn
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leads to a decrease in the parameter N = kA/cpAT?
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Fig. 2. Convective component of combined

heat transfer as a function of the

parameters N and ké: 1-N = 100; 2-100;
3—-1; 4-0.1,

As a result of our solution we were able to construct the temperature fields near the wall for various values of
the parameter N and AT/ Ty,.

In Fig. 3 the temperature fields are represented for four values of the parameter N and two values of AT/Ty, at
Pr=1.
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Fig. 3. Temperature field of medium near

wall as a function of the parameters N and

AT /Ty: 1-N=100; 2—10; 3—1; 4—01;

solid line—AT/Ty, = 0.2; broken line—AT/Ty, =
= 0.3,

An analysis of the graphs shows the effect of radiative energy transfer on the formation of the temperature
field near a hot wall.

A comparison of the temperature fields for convective heat transfer only and combined heat transfer shows that
the temperature gradient near the wall varies with the optical density of the medium. As the optical density increases,
the thickness of the boundary layer and the temperature gradient decrease. Consequently, the photons penetrate to a
lesser depth without interacting, which causes a decrease in radiative and an increase in convective transfer.

To determine the radiative component we use the expression [2]

_ oplTw Tl
Ge=—"71T 1

Ay 2

(20)

Here, it was assumed that A, = 0.85; T4 is the temperature of the medium at a distance from the wall equal to the
photon mean free path lp.

Since I¢ = 1/k, we find the value of the temperature Tg using expression (11) with nT = 1/k6.
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With a certain degree of accuracy the value of the temperature T§ can be represented in the following way:
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Values of the coefficients of the temperature field in (21) vary with AT/Tyw and N (Table 2).

Table 2. Values of the Coefficients of the Temperature Field n and
m as Functions of the Parameters AT/Ty and N

N=0.1 { N=10 N =10 N = 100
AT
TW n ‘ m n m n m n m
0.1 0.053642] 0.00000088 I041142 0.00001797 |0.2487; 0.0004023 0.5353' 0.00867
0.2 0.1452 | 0.00004687 {0.3 0.0008583 10.6665] 0.02039  [1.4256] 0.5294
0.3 0.229 0.0003725 [0.5187| 0.007626 {1.1796] 0.2196 3.1364( 10.009
0.4 0.3499 | 0.001559 |0.7552| 0.0349 1.9179] 1.7094 |5.4855 95.98

All the coefficients were found for each of the above-mentioned variants.

Thus, to find the temperature T and the radiant heat flux qr it is necessary to consider the effect on them of the
parameters N and AT/Ty,, as well as the Bouguer number {kd).

Solutions were obtained for 64 different variants of the above-mentioned parameters for carbon dioxide. The
results of the solution for the radiant heat flux are presented in Fig, 4. An analysis of the graph shows that as the
optical density of the medium increases the radiative component decreases.
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Fig. 4. Radiative components of combined
heat transfer as a function of the parameters
N, k6, and AT/ Ty: 1-AT/Ty = 0.2; 2—0.3;
3~0.4;at N=1 Ty =1000° K (a) and 700° K
(b), at N =10 Ty, = 1000° K (c) and 700° K (d) .

Our theoretical solution of the problem of combined heat transfer under conditions of free convections shows
that the processes of thermal energy transfer by convection and radiation are interrelated.

NOTATION

6(x) and O(x) are the thicknesses of the hydrodynamic and thermal layers; & is the relation between these
layers; x and y are coordinates; Wy and Wy are velocities; 1 = y/6 and nT = y/67 are dimensionless variables; u is a
constant with the dimension of velocity; u is the dynamic viscosity; g is the acceleration of gravity; T is the
temperature of the medium within the boundary layer; T, is the temperature of the medium outside of the boundary
layer; T is the temperature of the radiative-equilibrium layer; n and m are temperature field coefficients; p and py
are the densities of the medium at T and Ty, respectively; Cp is the specific heat; g; is Boltzmann's constant; k is the
absorption coefficient; R and P are the gas constant and the pressure; AT/ Ty is the temperature difference ratio;
(T — T) to Tyy; N = Ak/0)AT?is the parameter characterizing the ratio of the quantity of heat transferred by conduction
to the heat transferred by
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radiation; Bu = ké is the Bouguer number; Nu is the Nusselt number for convective heat transfer of a transparent
medium; Nu* is the Nusselt number for the convective component of the combined heat transfer; Gr and Pr are the
Grashof and Prandtl numbers.
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